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The theory of loop quantum gravity (LQG) is one of the leading contenders for a theory
of gravity at the Planck scale, and yet like all such contenders — string theory, causal set
theory — LQG is fraught with a variety of difficulties. Most of these difficulties are technical
in nature and are not burdened by the conceptual angst inherent in what has come to be
known as “the problem of time.” According to this problem, time is described by LQG
as being “frozen” or missing from the world. In the following, I will address the problem
of time by highlighting a tension between it and different interpretations of ‘spacetime’
and spacetime’s relation to the mathematical manifold M. I will use this tension and
subsequent analysis to argue that the problem of time results not from the Hamiltonian
constraint, as is often claimed, but due to our interpretation of LQG.

This paper is comprised as follows:
1 Primer on LQG
2 The problem of time
3 Interpretations and the problem of time
3.1 Rovellian
3.1.1 Conceptual problems with the derivation
3.2 Composite substantivalism
3.3 Manifold quantization
3.3.1 Some particulars on trickle-down effects

4 Conclusion



1 Primer on LQG

I will assume that my reader has some familiarity with the theory of LQG and will do
my best to ignore much, though not all, of its technical machinery.! In this section, I will
provide an overview of the mathematics required for a first order understanding of the
problem of time and its relationship to interpretations of LQG.

The theory of LQG is a theory of “canonically quantized” general relativity (GR) for-
mulated using a special set of “loop” variables. The canonical program quantizes physical
fields using the method developed by Dirac. Before running GR through Dirac’s procedure,
in LQG we first rewrite the metric field g on the manifold M in terms of a pair of “tetrad”
fields on M. What mathematical form these fields take is not important, but what is
important is that these fields are themselves defined by an su(2)-gauge field A. Though it
is the gauge variable A which gets canonically quantized, since the metric field is written
in terms of it, I will often talk about quantizing the metric field g or the gravitational field
represented by it. Once we have rewritten GR in terms of Ashtekar’s new variables (A, E),
we quantize the gravitational field by running the Hamiltonian version of GR through
Dirac’s procedure. The first half of this process results in a classical theory but one in
which the physics of GR has been squeezed into three constraints.? These constraints are
restrictions on what trajectories, in the phase space of GR, count as being physical.

In order to quantize the theory, we upgrade the constraints by turning certain func-
tions of the canonical variables into operators and requiring that the newly christened
operator-constraints annihilate what will be the physical states of theory. In other words,
schematically, before quantization we have three constraints of the form:

Ci(A;,E;) =0 (i=1,2,3). (1)

Where A; and Ej play the role of our canonical position and momentum variables. As
part of the quantization process, these constraints become:

Ci(A;, Ej)W = 0. (2)

These constraints are known as the Gauss, vector, and scalar constraints; though, the Gauss
constraint is often referred to as the gauge constraint, the vector as the diffeomorphism
constraint, and the scalar as the Hamiltonian constraint. The Gauss constraint requires
the physical system of LQG to be invariant under an internal gauge transformation, the
vector constraint requires the system to be invariant under spatial diffeomorphisms, and
the scalar constraint requires the system to be invariant under a reparameterization of the

! For an introduction to the theory see (Gambini and Pullin, 2011) or (Norton, Quantum Ontology: spin-

networks and spacetime, in preparation) and for a mathematically involved account of the theory see
(Rovelli, 2004) or (Thiemann 2007). The general and well known results of LQG, reproduced below, can
be be found in these sources.

There are three constraints in the context of Ashtekar’s reformulation and two constraints when written
in terms of the original “lapse” and “shift functions.”



time coordinate (Gambini and Pullin 2011, p.93-94, Rovelli 2004, p.146, 225). This current
work is part of an industry debating whether or not these constraints require or suggest
that variation across space and through time is either frozen or missing, but more on this
to come.?

In addition to the constraint-operators, C’i(Aj, Ej), what have come to be known as
the “area” and “volume operators” have been constructed, and each of these operators has
been found to have a countable spectrum with a lower bound. According to the standard
interpretation of these operators, physical regions and surfaces do not come in just any
size. The area of physical surfaces and the volume of physical regions come in discrete
“Planck-sized” units. How LQG predicates geometric size to physical space will not be
important for the purposes of this paper; what will be important is that, according to
LQG, the geometric size of physical regions and surfaces is limited to elements of discrete
spectra.4

It is important to keep clear the difference between ‘region’ and ‘surface’ on the one hand
and ‘volume’ and ‘area’ on the other. Though colloquially we often use ‘volume’ and ‘region’
interchangeably, we will not do so in the context of LQG (or GR for that matter). Allow
me to distinguish these concepts. In the context of a mathematical manifold ¥, a surface
is a two dimensional set of points, and a region is a three dimensional set. The area and
volume of these sets are measures of their geometric size. If ¥ is Euclidean, the geometric
size of some rectangular surface is the product of its two perpendicular edges, and we
call this geometric measure “area.” This same distinction holds when considering physical
regions and surfaces: area and volume are measures of the physical-geometric size of regions
and surfaces. What physical regions and surfaces are depends on one’s metaphysics of
spacetime. According to a common form of substantivalism, physical regions and surfaces
are collections of substantival spacetime points. Whereas, central to relationism is the view
that physical regions and surfaces are codifications of spatial relations which hold between
physical objects. What is new and beautiful about the theories of GR and LQG is that
fixed regions and surfaces have variable geometric size depending on the mass and energy
associated with the regions and surfaces.” For instance, in GR, given a single physically
substantial surface (a set of substantival points), the size of the geometry, given by the

3 It turns out that some version of the problem of time is found in any theory which utilizes the Hamiltonian

version of GR. In other words, the problem of time is not a special problem for LQG (Earman 2002).
For more on the problem of time see Isham (1991, 1992), Kuchaf (1992), Earman (2002), and Wiithrich
(2014).

For more details on how LQG predicates size to physical areas and regions and why these sizes are
elements of a discrete spectra see (Rovelli, 2004) or (Norton, in preparation).

However, I doubt that this is actually true on a relationist account of spacetime. For instance, according
to GR, in order to change the geometry we need to change the mass-energy distribution, which in turn
describes a different collection of spatial relations between physical objects. While the area and volume
do evolve, so too do relationally defined regions and relationally defined surfaces. Thus, it is not the case
that one fixed region can have many volumes: as the volumes evolve so too do the relationally defined
regions.



metric, and associated with the surface, will vary with the distribution of mass and energy.
What is new in LQG and mentioned above is that the geometric size of physical surfaces
and regions cannot get smaller and smaller. LQG predicts a lower bound for the geometric
size of physical surfaces and regions.

In the following, I will present the standard argument from the Hamiltonian constraint
for the absence of time in LQG. It is standardly claimed that due to the strange dynamics,
or rather lack thereof, predicted by the Hamiltonian constraint, there is fundamentally no
time in LQG. I will argue that this is the wrong diagnosis, and that time “goes missing”
independent of the Hamiltonian constraint.

2 The problem of time

In presenting the problem of time, I will follow DeWitt’s original 1967 account of the
problem. Two things to note in this regard: firstly, Dewitt derives the problem of time in
the context of “canonical quantum gravity” (CQG). CQG is formally distinct from LQG
in so far as it does not rewrite the metric field ¢ in terms of Ashtekar’s gauge potential
A. In accordance with this choice of variables, the state functionals in canonical quantum
gravity are W(v;;) rather than W(A), where 7;; is the three-dimensional projection of the
metric g. Secondly, in deriving this problem, Dewitt utilizes language which is colored by
an interpretive stance to which we might object. In particular, at a certain point in the
following derivation it is assumed that our theory still contains a spacetime, though we do
not have a fixed g as part of our background model and thereby have ceased to model a
system that includes physical distances or durations of time. I will address this implicit
interpretational stance and how it affects our understanding of the problem of time in
63.1.1.

In constructing LQG as well as canonical quantum gravity, we perform a “3+1 split” of
the four-dimensional spacetime manifold represented by M. The 341 spilt results in a one-
dimensional time manifold R parameterizing a stack of three-dimensional spatial manifolds
¥, with metric 7;;. This splitting of M requires that we split the four-dimensional Ricci
scalar into an intrinsic and extrinsic part. The extrinsic curvature of our three-dimensional
manifold from the perspective of a four-dimensional spacetime is given by the expression
Kij K i — K25 According to DeWitt, with this split, we can express the classical scalar
constraint as:

Cs =2 (Ky;K% — K> - R)=H (3)

Where R is the three dimensional Ricci scalar and encodes the intrinsic curvature of X.
DeWitt reminds us that a generic Hamiltonian is written in terms of a kinetic energy

6 K is called the second fundamental form and K is the contraction of this form with the metric. Equation
(3) below is a classical constraint equation. The corresponding quantum constraint is given by DeWitt
(1967) as well as any number of books or review articles.



term minus a term for the potential energy. That the curvature of spacetime encodes the
energy of the gravitational field according to GR, suggests that we interpret the scalar
constraint as the sum of a ‘kinetic-extrinsic” curvature energy term minus a “potential-
intrinsic” curvature energy term (1967, p.1117). Given this interpretation, it is natural
to interpret the scalar constraint as playing the role of the Hamiltonian in describing the
system’s evolution. It is for this reason that the scalar constraint is more commonly known
as the Hamiltonian constraint (and labeled H).

After we upgrade to H and replace 7vij with the state functionals W(v;;), DeWitt con-
cludes that for any time z° and state W(v;;) which solves the Hamiltonian constraint
HY = 0:

Ul (2°, 1) W = Wly;;(0, )W (4)
Where 7, (20, %) is a field operator acting on the state U. The only difference between
the sides of this equation, is the value of the time variable 2°. DeWitt notes that all field
operators, other than ¥;;(z%, &), yield a similar result, and since the physics of quantum
systems is encoded in the statistics produced by inner products of above kind, “the quantum
theory can never yield anything but a static picture of the world” (1967, p.1119). In other
words, no physical property, described by LQG, varies with time. This result is often named
the “frozen formalism” or the “frozen dynamics” of LQG. The frozen dynamics is the first
aspect of the problem of time and results from the Hamiltonian constraint. However, the
usual response to the frozen formalism is to generate a second and distinct aspect of the
problem by inferring that time is absent in LQG. What physicists usually mean by “time
is absent” is that the coordinate time (xp) does not model physical time. For instance,
according to DeWitt:

Instead of regarding this equation [the Hamiltonian constraint] as implying that
the universe is static we shall interpret it as informing us that the coordinate
labels z* are really irrelevant. Physical significance can be ascribed only to the
intrinsic dynamics of the world, and for the description of this we need some
kind of intrinsic coordinatization based either on the geometry or the contents
of the universe. (1967, p.1120)

In other words, rather than interpreting the Hamiltonian constraint as requiring the dy-
namics of canonical quantum gravity to be frozen, DeWitt suggests that we re-evaluate
our interpretation of xy as modeling time. Though I have used DeWitt’s derivation of the
problem and thereby am technically working with a different set of variables than that of
LQG, the same issues and reasoning presented here are carried over to LQG. Throughout
this paper when I refer to the problem of time, I am referring to the second aspect of
the problem of time — that time “goes missing” in LQG. I will not use the alternative
convention whereby ‘the problem of time’ refers merely to the frozen dynamics of LQG.
In summary, we begin with the formalism of GR which includes a differentiable manifold
M and a psuedo-Rimannian metric, we quantize the gravitational field through either g or



A, and do nothing to M besides split it into 3+1 submanifolds. Since our mathematical
model does not include a metric, the physical world being modeled is assumed not to have
the physical structures modeled by the metric. After replacing g with W¥(v;;), we interpret
the coordinate function xg on M as representing time and show that quantum expectation
values do not change as we vary xg. Finally, since we assume that physical geometry does
in fact evolve with respect to physical time, we infer that zo must not model time after
all. Since the Hamiltonian constraint requires that o not model time, we say that time is
missing in LQG and this is the problem of time. The reason why it is a “problem” that zq
does not model time is because we have constructed LQG with the intention that it would,
and have no agreed upon alternative for how to represent time in its place.”

This concludes my presentation of the problem of time in LQG. I will briefly argue
that there is a prima facie conflict between this derivation of the problem of time and
other commitments regarding the nature of “spin-networks” and spacetime in LQG. I will
use this tension as a tool for gaining a better appreciation for why spacetime (and time)
disappear(s) in LQG.

Central to the derivation of the problem of time is the commitment to treat M (with-
out a metric) as representing a spacetime, and x( as representing time. And yet, in recent
literature, one often hears claims to the effect that in LQG there is no spacetime funda-
mentally:

The spin networks do not live in space; their structure generates space. And
they are nothing but a structure of relations... (Smolin 2002, p.138)

...the quanta of the field cannot live in spacetime: they must build “spacetime”
themselves... Physical space is a quantum superposition of spin networks...a
spin network is not in space it is space. (Rovelli 2004, p.9,21)

LQG thus seems to entail that space(time) is not fundamental, but emerges
somehow from the discrete Planck-scale structure. (Wiithrich 2006, p.169)

One influential idea based on so-called ‘weave states’ proposes that the space-
time structure emerges from appropriately benign, i.e. semi-classical, spin-
networks. (Huggett, Wiithrich 2013, p.7)

Each of the locutions: ‘Planck-scale structure,” ‘spin-networks,’” ‘structure of relations,’
etc., refer to the same thing. What a spin-network is will be unimportant for our purposes
other than that it is whatever physical structure is represented by the states of LQG.®

" For an overview of possible solutions to the problem of time from the physics community see Isham (1991,
1992) and Kuchar (1992).
8 For a discussion on the ontology of these networks see (Norton, in preparation).



According to the above quotes, these networks are interpreted as being a structure or a
structure of relations which describe or perhaps are the Planck-scale structure of spacetime
or, more accurately, “quantum spacetime.”

Since the derivation of the problem of time assumes that spin-network states (V) are
dependent on time (2°) and space () axis, there seems to be a conflict between the deriva-
tion and interpretations of LQG which take spin-networks to be the pre-spatiotemporal
“seeds” of spacetime. How is it that spin-network states are thought to be dependent on
time and space if “[p|hysical space is a quantum superposition of spin networks”? (Rovelli
2004, p.21)

It turns out that there are ways of interpreting LQG which avoid this conflict: the
idea is, we begin our analysis of LQG by assuming that spin-network states are dependent
on space and time coordinates and then derive certain undesirable consequences, such as
the frozen dynamics. We then use these consequences to motivate an interpretation of
the states as representing a pre-spatio-temporal structure from which spacetime is built
or emergent. In the following, I will represent four interpretations of LQG under which
spacetime disappears fundamentally and for which spin-networks are described as being
pre-spatiotemporal. The first interpretation is of the kind I mentioned above: the Hamilto-
nian constraint, through the resulting frozen dynamics, helps motivate a pre-spatiotemporal
interpretation of spin-networks. However, there are interpretations of LQG which describe
spin-networks as being pre-spatiotemporal for reasons independent of the dynamical con-
siderations stemming from the Hamiltonian constraint. I will present three interpretations
of this kind and use them to argue that, contrary to standard presentations, the Hamilto-
nian constraint is not the reason why time goes missing in LQG or, for that matter, the
reason why spin-networks are thought to be pre-spatio-temporal. To this end, I will argue
that the first interpretation, mentioned above, requires that we first adopt a notion of time
which we, presumably, do not take to be the case.

3 Interpretations and the problem of time

In presenting the following interpretations of LQG, I do not mean to suggest that these
are the only interpretations of the theory, and indeed they are not (see Norton, in prepa-
ration). I present the following interpretations in particular since they are present, either
explicitly or implicitly present in the literature, or serve to highlight how different inter-
pretations of ‘spacetime’ affect the nature of the problem of time in LQG. The first two
interpretations are rather straight-forward whereas the last two are far less developed and
more programmatic. I will do my best to present what is ontologically relevant from the
latter two interpretations but will not provide a very complete account of them since it is
unlikely that such an account is possible, at least in this stage of their development.



3.1 Rovellian

Though the following interpretation is based on the words and works of Carlo Rovelli, I
do not claim that this is his interpretation. The following interpretation is Rovellian, if
not Rovelli’s. In the following, I will explain how, according to the Rovellian, spacetime
disappears in LQG and the role which the Hamiltonian constraint plays in it doing so.

Taking a step back, in the context of classical general relativity, Rovelli interprets the
diffeomorphism invariance of this theory to mean that the background manifold M is a
gauge artifact of GR (2004, p.74). In fact, this is often how the manifold is treated by
those wielding Einstein’s hole argument (or more precisely, Earman and Norton’s hole ar-
gument). Without reviewing a well-worn debate, what we are told to take away from the
diffeomorphism invariance of GR is that, just because the theory utilizes M in modeling
spacetime (M, g), we ought not assume that there is a physically substantial manifold of
spacetime points. Importantly, the diffeomorphism invariance of GR is found recapitu-
lated in the theory of LQG and is the reason why the Rovellian interprets M as being
mathematical gauge. The Rovellian does not begin her interpretation by tossing aside the
manifold but rather concludes that it is gauge because of the diffeomorphism freedom of
LQG which the Hamiltonian constraint plays a role in expressing.

As we have already discussed, the Hamiltonian constraint seems to require that our
states be frozen in time and not to evolve as we move the state along the time axis zg.
Additionally, the diffeomorphism constraint is thought to require our states to be invariant
under three-dimensional spatial diffeomorphisms (Gambini and Pullin 2011, p.93-94, Rov-
elli 2004, p.146, 225). Combining these constraints, we can interpret the four-dimensional
diffeomorphism freedom of GR as having been projected along space and time dimensions
in the context of LQG (Isham 1992, p.33). As a result, Rovelli concludes that the physics
of LQG is independent of U’s relation to the manifold:?

In fact M (the spacetime manifold) has no physical interpretation, it is just a
mathematical device, a gauge artifact... There are not spacetime points at all.
The Newtonian notions of space and time have disappeared... the spacetime
coordinates Z and ¢ have no physical meaning...(2004, p.74)

Y

What Newton called “space,” and Minkowski called “spacetime,” is unmasked:
it is noting but a dynamical object — the gravitational field... ...the gravita-
tional field is the same entity as spacetime. (2004, p.9, 18)

9 Tt is unclear how literally we should interpret Rovelli’s repudiation of M as bearing any physical salience.
It seems that at a minimum the global topology of “space” ¥ has bearing on what our experiences of the
world is like. For instance, if ¥ is compact (i.e. has a dimension which is rolled up like a three-dimensional
cylinder), then our theory of (quantum) spacetime should predict that we could travel a finite distance
in one direction and come back to where we started.



Since all there is to spacetime is the metric field, according to Rovelli, and since the states
of LQG represent a quantum version of the metric field, the states ipso facto represent
a quantum version of spacetime itself! Consequently, there is no spacetime, qua classical
structure, in LQG. Spacetime qua the physical structure represented by (M, g), disappears
according to the Rovellian, in two steps: the manifold is interpreted as having “no physical
interpretation” (ibid p.74) and the metric field is replaced by quantum states.

Thus, for Rovellians, the Hamiltonian constraint helps motivate the “de-reification” of
M and thereby the disappearance of spacetime in LQG. I say “helps motivate” since the
Hamiltonian constraint does not do this alone. For the Rovellian, it is the combined effect of
the Hamiltonian constraint, the three dimensional vector constraint, and the mathematics
of the theory being independent of how we perform the 3+1 split (Thieman 2007, p.39),
which together suggest that the manifold is a gauge artifact.'®

Shortly, I will present three competing interpretations of LQG under which spacetime
and time disappear and do so independently of the Hamiltonian constraint; however before
doing so, I will argue that the Rovellian account of spacetime’s disappearance requires that
we adopt a rather counterintuitive notion of spacetime and time.

3.1.1 Conceptual problems with the derivation

Rovellians interpret M to be a gauge artifact in part because of the threat of the frozen
formalism. The idea is that if we were to take the manifold “seriously” then the dynamics
described by LQG would be frozen (as well as other oddities arising from the diffeomor-
phism constraint); thus, according to the Rovellian, the manifold must only be an artifact of
our mathematics. The question which will drive the following discussion is “how ‘seriously’
must we take the manifold (M) in order to derive the frozen formalism?”

Recall the following derivation of the frozen formalism and the resulting argument for
the problem of time:

We begin with the formalism of GR which includes a differentiable manifold M
and a psuedo-Rimannian metric, we quantize the gravitational field through
either g or A, and do nothing to M besides split it into 3+1 submanifolds.
Since our mathematical model does not include a metric, the physical world
being modeled is assumed not to have the physical structures modeled by the
metric. After replacing g with W(v;;), we interpret the coordinate function g
on M as representing time and show that quantum expectation values do not
change as we vary zg. Finally, since we assume that physical geometry does in
fact evolve with respect to physical time, we infer that o must not model time
after all. Since the Hamiltonian constraint requires that zg not model time, we
say that time is missing in LQG and that this is the problem of time.

10Tn order to remove all traces of the manifold we also need to note that the geometric observables are
“moduli”-invariant. See Rovelli (2004, p.267) or Norton (Part 1 of this dissertation).



Implicit in this derivation of the frozen formalism is the assumption that M still represents
a spacetime and x still represents time even though our model does not include a metric.
What must spacetime and time be in order to still have a model for them though that model
does not include a metric? In removing g from our model, it seems that we have at least
two choices for what we take the geometric properties of a “spacetime” to be. We might
think that a spacetime does not require any physical, metrical, or geometrical properties,
and can be modeled by the bare manifold M alone. According to this suggestion, in
removing ¢g from our model, we do not thereby remove spacetime from the model. On
the other hand, since we remove ¢ in order to make room for the quantum geometry
described by the states ¥, we might think that spacetime, according to LQG, simply has
quantum rather than classical geometric properties. Accoriding to this latter suggestion,
LQG models spacetime sans g by representing its quantum geometry through W. In either
case, in order to derive the frozen formalism, we must interpret the Hamiltonian constraint
as describing time evolution with respect to xg, and this requires that a spacetime and time
remain represented by the mathematics of LQG even though the theory does not include
a classical metric.

We ought to object that it is infelicitous to think that there is a spacetime or time in
either the bare-geometric world (represented by M) or in the quantum-geometric world
(represented by (M, ¥(A))). Surely these structures are either too bare or too quantum to
be models of spacetime (as opposed to quantum spacetime). In both the bare and quantum
worlds, there is no well defined spatial distance between objects in “space” and no durations
between moments of “time.” Moreover, any physical structure which is defined in terms of
or dependent on well-defined lengths or durations of time such as velocity, momentum, and
force, will also be absent were the world without the physical geometric properties encoded
by ¢.!! Since so much of what we take a spacetime and time to be are missing under the
bare and quantum descriptions, it is reasonable to suppose that a spacetime and time are
not modeled by them. If this is the case, then spacetime and time disappear due to our
interpretation of these concepts and not because of the Hamiltonian constraint.

Contrary to the above considerations, one might insist that either the bare or quan-
tum world (M or (M|U(A))) remains relevantly spatiotemporal to the extent that the
Hamiltonian constraint entails the frozen formalism. However, what should we then infer
from the frozen formalism? Should frozen dynamics signal, at this late stage, that time is
missing when the lack of a physical metrical structure did not? I suspect, that for many,
the answer is ‘no.” And that, if time can survive the stripping of the physical metrical

11 Since we explicitly quantize only the three-dimensional spatial projection of the gravitational field rep-
resented by the three-metric «y;; or the three-dimensional gauge field A, one might conclude that the
temporal metrical structure has not been affected and that perhaps there are in fact durations of time
in LQG. Though sensible, this conclusion is too quick. Since the formalism of LQG is built around an
arbitrary splitting of the spacetime manifold into space and time submanifolds, whatever conclusions
we infer about physical spatial lengths must also hold true for physical, temporal lengths. What we
are calling ‘space’ and ‘time’ are artifacts of our mathematical representation which we can keep from
affecting our interpretation of the physics by keeping in mind the arbitrariness of the 341 split.

10



structure then it can survive frozen dynamics. Consequently, if time does not survive in
LQG it is not because of the frozen dynamics described by the Hamiltonian constraint.
In the following, I will expand on this theme and introduce alternative interpretations for
which spacetime and time disappear fundamentally in LQG and for reasons independent
of the Hamiltonian constraint. The first interpretation is an explicit elaboration of some
of the ideas just presented.

3.2 Composite substantivalism

The following interpretation is an example of one of a few interpretations which one might
adopt regarding a spacetime’s relation to (M, g). In the context of LQG, since there is
no physical structure having the properties described by g, what we take a spacetime’s
relation to (M, g) to be, will make a difference as to whether or not there is spacetime in
LQG.

According to composite substantivalism (CS), a spacetime has two components: a
substantial basal structure represented by M and a physical geometry represented by g.
According to CS, these two structures combine to form a spacetime which we represent by
(M, g). Since we replace g with the quantum variant ¥(.A) in LQG, there is no spacetime.
The physical structure of LQG is described by the ordered pair (M, ¥(.A)) and this object,
according to CS, does not have the physical properties required of a spacetime. I will
stipulate that according to CS, M represents a substantival basal structure, W(.A) repre-
sents a physical spin-network (or more accurately an “s-knot”) responsible for quantum
geometry, and together (M, ¥(.A)) represents a physically substantial quantum spacetime.
Thus, while there is no spacetime in CS-LQG, there is a quantum spacetime. Importantly,
time and spacetime disappear from CS-LQG because of our interpretation of ‘spacetime’
and not because of the Hamiltonian constraint.

3.3 Manifold quantization

In this section, I introduce what I am calling the “TaG” (topology and geometry) (and
“trickle-down” interpretations. I will explicate these interpretations together since, unlike
Rovellian or CS-LQG, these interpretations “quantize” the manifold M. In just a moment,
I will indicate, as best as possible, what “quantize” means in these contexts. However, as I
mentioned at the start of this paper, these two interpretations are far more programmatic
than well-developed versions of LQG; as such, I will not attempt to explain in very great
detail how the manifold is “quantized” and will merely indicate what it might mean for
spacetime and the problem of time if it were. In short, since TaG and trickle-down inter-
pretations replace the manifold M with a quantum basal structure “M,” in addition to
quantizing the gravitational field, the physical structure described by these interpretations
is that much less like a spacetime than were we to simply quantize the gravitational field.

According to TaG versions of LQG, the topology and geometry of classical spacetime

11



(M, g) are explicitly replaced by some suitably quantized versions. The impetus behind
TaG-LQG is a desire for a more radically background-independent theory of quantum
gravity. How one goes about “quantizing” M however, is far from clear. In general, what
‘quantization’ means in this context is distinct from what it means when applying Dirac’s
quantization procedure. Moreover, as Isham (1991, p.137) notes, since M is a composite
structure consisting of a set of points, topology, and differential structure, one has many
options for which structures to quantize in quantizing M each of which corresponds to
a different kind of TaG interpretation. For instance, according to Christopher Duston’s
version of TaG, we “quantize” M by encoding certain topological features of the manifold
into the states ¥ by appending to the states an additional internal degree of freedom
(2012, p.5). The states of Duston’s extended-LQG are dependent on the manifold M
which does not have a well defined topology. Rather, these states encode M'’s topology
in addition to its geometry. Though both Isham and Duston have developed programs to
quantize the topological structure of M, one could instead attempt to quantize M through
its differential structures or by discretizing the manifold’s base set of points. In any case,
however one goes about “quantizing” M, in addition to g, the states of TaG-LQG represent
physically distinct configurations of <M, g): a quantum-spatio-temporal structure in all its
manifold glories. To be clear, in replacing (M, g) with (M, §), we are not merely choosing
to use some new mathematics, we are choosing to use a new mathematical model. No
longer do we take there to be a physical structure represented by M and g. If we assume
that a spacetime is only that physical structure modeled by (M, g), then since we purposely
peel away all the mathematical structure which we have deemed necessary for modeling a
spacetime, there technically is no spacetime in TaG-LQG.

Though TaG theories have a modified mathematical structure from that of traditional
LQG, they will, in general, incorporate many of its developments.'? For instance, according
to Duston’s program, the physical states are simply modified spin-network states. Though
TaG-LQG is less an interpretation than it is an extension of LQG, I have included it since
spacetime disappears under it in a novel way: both structures which we used to model a
spacetime in GR are removed from our physical model in LQG. This is different from the
mathematical structure of Rovellian-LLQG which still includes M, if only as a mathematical
artifact.

As for trickle-down interpretations, I intend for this interpretive-scheme to capture any
and all interpretations for which the quantization of the gravitational field is thought to
automatically affect a discretization of the base manifold, or something similarly destruc-
tive.!3 Unlike TaG interpretations which explicitly modify LQG to include a “quantization”
of M, according to trickle-down interpretations, M is indirectly “quantized” as an effect
of having quantized the gravitational field. The trouble with trickle-down interpretations

12 This term ‘traditional’ would be misleading if I did not add the caveat that there have been many
attempts at formulating the theory of LQG and that no formulation should really be called traditional
in a very serious sense.

'3 For a general discussion of this idea, see Isham and Butterfield (2001) and Isham (1991).
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is that we are never told how quantizing the gravitational field affects M. All we are
told (more often implicitly than explicitly) is that the lumpy geometry of LQG (recall §1)
somehow entails, or perhaps simply suggests, that the physical basal structure is not a
continuum and thereby not modeled by M. For instance, according to Butterfield and
Isham:

. we mentioned the discrete spectra of the spatial area and spatial volume
quantities: results that arguably suggest some type of underlying discrete struc-
ture of space itself. [Or, the] quantization of logically weaker structure such
as differential or topological structure; these are called ‘trickle-down effects’.
(2001, p.78)

The idea, then, is that though we only explicitly quantize the gravitational field, the effect
of doing so results in a discrete geometry which entails or suggests that the physical basal
structure is more accurately modeled by something other than M. For the time being, we
do not need to understand why these interpretations take there to be trickle-down effects.
The purpose in discussing these interpretations is to highlight their ontology: the physical
basal structure is not modeled by M. In order to show that trickle-down interpretations
are more than a logical possibility, I will argue in the following section that something
like trickle-down effects appear in Christian Wiithrich’s and Karen Crowther’s accounts of
LQG. Additionally, I will present two arguments for why we might think that there are
such effects. Before turning to these two tasks I will briefly discuss in which ways trickle-
down effects require that we formally modify LQG and how some modifications threaten
the technical fidelity of the resulting theory.

According to trickle-down interpretations, whatever basal structure there is to the
world, this structure is not a physical continuum but rather something “logically weaker”
(ibid p.78) which I will denote as M. Asa result, spacetime disappears for the same reason
it does in TaG-LQG: there is no physical structure having the form (M, g). The trouble
with both trickle-down and TaG interpretations is that we cannot simply replace M with
M, without p0851b1y, ruining the technical fidelity of LQG Depending on which mathe-
matical form M takes, the result of exchanging M for M might not result in a coherent
formal structure. For instance, since the states of LQG are defined using holonomies along
smooth curves in M (Norton, in preparation), if we replace the continuum with a discrete
lattice, there will be no spin-network states. However, not all “replacements” are created
equal: under Duston’s program (2012), M is simply replaced with a continuum that lacks
a well-defined topology (M) which Duston argues does not ruin the technical fidelity of the
resulting theory (p.7). It is for this reason that Duston is able to utilize the formal results
of LQG as well as its states. I note this potential complication since the extent to which
TaG and trickle-down interpretations are more like extensions of LQG or new theories all
together, depends on how much the “quantization” of M requires that we rework other
aspects (e.g. the Hilbert spaces) of the theory.
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3.3.1 Some particulars on trickle-down effects

In order to provide some flesh to the trickle-down interpretations and to show that they are
not merely a logical possibility, I will briefly examine the views of Wiithrich and Crowther.
Though neither author claims to endorse a trickle-down interpretation, both describe LQG
in a way which suggests that there are trickle-down effects. In particular, both authors
suggest that the discrete geometry of LQG somehow causes the basal structure of spacetime
to be something other than a smooth continuum. In fact, the smooth manifold is described
by these authors as being an emergent structure from some more fundamental discrete
structure.

Starting with the physical states and predictions of LQG, according to Wiithrich, the
process of taking the appropriate classical limit “should have as its effect the re-emergence
of the continuous spacetime with its pseudo-Riemannian manifold” (2006, p.168, 174), and
that the effect of following a certain mathematical procedure should “change the structure
from discrete quantum states to smooth manifolds” (2014, p.24).'* Consequently, according
to Wiithirch, the fundamentally basal structure of LQG does not have the structure of a
continuous manifold. While we are never told exactly why the continuous manifold is
missing fundamentally, it’s possible that the manifold being missing is somehow connected
with the discrete geometry of LQG. Following his discussion of this discrete geometry (see
§1), Wiithrich concludes:

“The granularity of the spatial geometry — the ‘polymer’ geometry of space —
follows from the discreteness of the spectra of the volume and the area opera-
tors... . Thus, the smooth space of the classical theory is supplanted by a dis-
crete quantum structure displaying the granular nature of space at the Planck
scale. Continuous space as we find it in classical theories such as GR and as
it figures in our conceptions of the world is a merely emergent phenomenon.”
(2014, p.14)

If “continuous space” refers to the spatial continuum (M), as is common, then according
to Wiithrich, the discrete geometry of LQG somehow entails that the continuum is missing
in LQG. However, if “continuous space” refers to a continuous spectrum of geometric areas
and volumes, then this passage by Wiithrich does not suggest a connection between the
discrete geometry of LQG and the supposedly missing manifold. The differences between
these two senses of “continuous space” is subtle and important to keep clear. One might
think that failing to have continuous geometric-spectra is the same as failing to have a
continuous basal structure, but this is not true (see “Argument 1” below). Indeed, there
are no formal constraints against defining a discrete geometry on a continuous manifold
M. In any case, though we are not told exactly why the smooth manifold is missing, since

14 And more particularly, according to Wiithrich, the spacetime topology R x ¥ emerges or is required to
emerge in LQG (2006, p.159-160).
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it is missing according to Wiithrich, M — qua the smooth space of GR must not be a
background feature of our mathematical model.

Similarly, throughout her account of spacetime emergence, Crowther claims that “...
GR, and (continuum) spacetime...” (p.9) must be recovered and that LQG describes space-
time as a “cloud of lattices” (p.247). Taken at face value, these expressions suggest that the
continuum of spacetime is affected in LQG; in particular, the second quote suggests that
rather than having a continuous manifold of points in LQG, we have a cloud of lattices.
Moreover, in noting that the geometric operators of LQG only increase in value as we in-
crease the density of loops in a given region rather than becoming a better approximation
of classical geometry (the details of this process are unimportant), Crowther notes:

This is because macroscopic geometry is not recovered in the limit as the density
of the weave (lattice) of loops goes to infinity. Intuitively, of course, it seems
as though it would be the case that the continuum could be approximated in
this way... The limiting procedure was thought to run analogously to that in
conventional QFT, where a continuum theory is defined by taking the limit of
a lattice theory, as the lattice spacing a goes to zero. (p.253-254)

In this quote, Crowther is primarily concerned with recovering macroscopic geometry, yet
she expresses LQG’s inability to do so in terms of a failure to approximate “the contin-
uum.” Again, the word ‘continuum’ is ambiguous on its own: standardly, it refers to the
continuum (M) used in modeling spacetime, but it could refer to the spectrum of possible
area and volume values associated with a pseudo-Riemannian metric. Helpfully, Crowther’s
quote continues and contrasts this continuum against the lattice of lattice-QFT. The lattice
of lattice-QFT is, of course, supposed to approximate and replace the smooth topological
manifold M. Indeed in this regard, Crowther later claims “...the limit in which the density
of the weave states goes to infinity (or the “lattice spacing” goes to zero) fails to approxi-
mate continuum spacetime” (p.260). Thus, according to Crowther, the fundamental basal
structure in LQG is something like a cloud of lattices: a discrete, non-continuous struc-
ture and thereby not modeled by M (p.247). In summary, according to both Crowther
and Wiithrich, the continuum of spacetime is merely an emergent structure and is thereby
missing fundamentally. Since there is no continuum, fundamentally, our mathematical
model must include some non-continuous basal structure M in place of M. I have briefly
described these aspects of Crowther’s and Wiithrich’s accounts of LQG in order to demon-
strate that apparent appeals to trickle-down effects are sprinkled throughout the literature
on LQG.

Neither Wiithrich nor Crowther explicitly endorse a trickle-down interpretation and
thereby do not argue for the reality of trickle-down effects. Moreover, Isham and But-
terfield merely allude that there may be such effects. Indeed, it is entirely possible that
these authors are simply speaking metaphorically or employing a heuristic in talking about
trickle-down effects. In whatever ways trickle-down effects have been employed in the past,
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we might want to know whether or not there are such effects. In the following, I will sup-
ply, on behalf of trickle-down interpretations, two arguments for the reality of such effects.
One of these arguments is aimed at showing that quantizing the geometry of (M, g) logi-
cally entails that the basal structure is itself discrete and not modeled by M. The other
argument is aimed to show that quantizing the geometry of (M, g), in conjunction with
something like Ockham’s razor, requires that we modify our mathematical model from that
of a continuous background to that of a logically simpler structure. I will argue that the
first argument fails and will highlight challenges faced by the second.

Argument 1: Regions and surfaces on the continuum M can be infinitely divided into
smaller and smaller sub-regions and sub-surfaces by taking smaller and smaller open sets
(think about drawing circles on a piece of paper). However, as we have seen, physical
regions and surfaces in LQG, cannot be infinitely parsed: there is a smallest size for any
region or surface. Thus, if the physical basal structure were modeled by a continuum, as
opposed to something like a lattice, there would be physical regions (those small circles)
smaller than those allowed by the predictions of LQG. If this argument is sound, then
the discrete geometry of LQG entails, along with other premises, that the physical basal
structure of LQG is not modeled by a manifold on pain of contradiction.

In understanding where this argument goes wrong, it is helpful to recall the discussion
from §1 where I was careful to distinguish between physical regions and surfaces on the one
hand and physical areas and volumes on the other hand. The problem with Argument 1 is
that the argument does not specify what it means by ‘small’ in reference to taking “smaller
and smaller” open sets. Standardly, a small region in M is a region which has a small
geometric measure, either a smaller area or volume. However, which definition of area and
volume are we supposed to use in formulating the above argument? If area and volume are
defined using the operators of LQG, then the first premise is false. It is not the case that
regions can be parsed into smaller and smaller LQG-areas and LQG-volumes. However, if
area and volume are defined in the first premise using a psuedo-Riemannian metric, then
the argument equivocates since the second premise concerns LQG-areas and LQG-volumes
and not pseudo-Riemannian areas and volumes. More importantly, our physical model
does not include a metric; thus, while we are free to add a non-physical metric to M, the
Riemannian structures it defines (the circles we drew) are also non-physical. For these
reasons, Argument 1 fails: either the first premise is false or the argument equivocates
between two notions of ‘small,” one of which is non-physical.'®

Argument 2: Given that the geometric spectra are discrete, why postulate such a rich
structure as the continuum? According to this argument, physical geometry could be

15 One might wonder how a proper subset could not have a smaller volume than the set in which it is
contained. This is possible in LQG due to the non-standard definition of area and volume utilized by
the theory. See (Norton, in preparation) for more detail in this regard. In general, given a particular
spin-network state, a proper subset might not defined a surface or region which is associated with any
eigenvalue of area or volume. More generally though, every open set which is a proper subset of its
closure has measure equal to and not less than its closure.
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modeled with a simpler base set of points and topology and, as a result, the physical
basal structure must actually have the logically simpler form M. There are two parts to
this argument: first, that the physical geometry of LQG can be modeled with a simpler
structure than M, and second, that the physical world must not actually be a continuum.
In this way, the continuum disappears fundamentally in LQG and does so by coupling the
discrete geometry of LQG with Ockham’s razor. The discrete geometry suggests that we
don’t need a continuum, and Ockham’s razor cuts it out. There is nothing wrong with this
argument though it does require that the physical geometry of LQG actually be captured
using a simpler basal structure and that we take Ockham’s razor seriously. Regarding the
first condition, for it to be true that the physical geometry of LQG be captured by some
logically simpler structure M, it must be the case that replacing M with M does not
modify the physical predictions of the theory. Thus, in order for Argument 2 to succeed,
we must first demonstrate that the physical predictions of LQG are in fact invariant under
this replacement (see §3.3).

To be clear, neither Isham nor Butterfield, nor Wiithrich, nor Crowther, employ either
Argument 1 or 2. I have presented these arguments both as a guess towards what might
be possible motivations for trickle-down effects and as a means of stimulating a more
explicit conversation regarding their reality. If there are trickle-down effects in LQG, then
spacetime and time are missing from the theory due to our interpretation of what is essential
for spacetime: g and in particular M, and not because of the Hamiltonian constraint.

4 Conclusion

Though spacetime and time might disappear in LQG, it is unlikely that the Hamiltonian
constraint has much to do with this. According to the CS-LQG, spacetime disappears
because the world does not include a physical metrical structure. According to both the
trickle-down and TaG interpretations, spacetime disappears because there is neither a
physical metrical structure nor a physical continuum in LQG.'6 According to these in-
terpretations, spacetime disappears independently of the constraints and, in particular,
time does not disappear due to dynamical considerations stemming from the Hamiltonian
constraint. Contrary to these interpretations, according to the Rovellian, spacetime and
time do disappear because of the constraints and, in particular, time disappears because of
the frozen dynamics predicted by the Hamiltonian constraint. However, as we have seen,
in order for time to disappear because of the Hamiltonian constraint, it is required that
we endorse an odd notion of time: our notion of time must not require a metric and yet
must require non-static dynamics. Unless this is what we take time to be, time does not
disappear because of the Hamiltonian constraint but, presumably, because we removed
the metrical structure from our model. Indeed, if time is essentially metrical, then the

16 One does not have to be a substantivalist to think that the continuum represents physical information.
The ‘physical continuum’ stands for whatever physical structure is represented by M.
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standard interpretation of the Hamiltonian constraint (as governing temporal dynamics),
cannot even get off the ground. If the object of time requires a metric, then there literally
is no time for the there to be a “Hamiltonian” constraint in LQG.

This paper is primarily concerned with how we might interpret the mathematics of
LQG and the notion of spacetime in light of the Hamiltonian constraint and claims to
the effect that spacetime disappears in LQG. By properly diagnosing the role which the
Hamiltonian constraint plays or does not play in revealing the absence of time in LQG,
we are better positioned to find a solution to the problem of time. In general, in order to
find a solution to a problem it is helpful to know why there is a problem in the first place.
Thus, so long as we continue thinking that time disappears because of the Hamiltonian
constraint, we might look for time or variable dynamics in the wrong place. For example,
it will not do to argue that some distinct sub-component of the Hamiltonian operator or
some combination of operators, captures evolution with respect to zg. As I have argued,
there are independent reasons for thinking that xg is not the right structure upon which to
model time: there is no metric, and it might be the case that there is no smooth manifold.
Consequently, even if we were to find a structure which “evolves” states with respect to
x(, this would not entail that xy thereby models time or that the supposed “evolution” is
a model of physical evolution.
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